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There Are Many Applications of Time-integrated X-ray Imaging at NIF 
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Equatorial Hard X-ray Imager (EHXI) -- View of emission from hohlraum 

Time-integrated shape of 

ICF capsule implosion 

Image plate around periphery of primary 

diagnostic (framing camera or streak camera) 

for time-integrated imaging and verification of 

diagnostic positioner alignment. 

Framing Camera 

Detector Area 

Due to the harsh neutron environment 

(~109 n/cm2), most time-integrated X-ray 

imaging at NIF is currently recorded on 

image plate or film. 



Advantages of Electronic Readout vs. Image Plate or Film 

• Rad hard Charge-Injection Device (CID) cameras can replace image plates in 

certain applications at NIF, leveraging significant advantages of electronic 

readout: 

 Data available within seconds after the shot instead of hours to days 

later for image plate or film 

 Much more efficient operation — No access to Target Chamber or 

diagnostics is required to retrieve the data 

 Enhanced safety — Technicians avoid rad dose they would otherwise 

receive going in to retrieve media  

 

• One disadvantage of electronic sensors: 

— Saturation limit of CIDs ~ 10x less than image plate; IP and film can 

obtain useable data on higher yield shots 

Palmer — SPIE 8850, TD Physics and Eng. for ICF II, Aug. 2013 4 LLNL-PRES-XXXXXX  



CID4150 Imager from Thermo Scientific, CIDTEC Cameras 

• Sensor selected based on successful use on 

ICF experiments at OMEGA (LLE) 

• Highly compact device (31 x 23 x 5 mm) 

originally developed for dental X-ray imaging 

• 800 x 600 array,  38.5 µm (square) pixels; 

large full well capacity > 106 e- 

• Operated at room temperature (no thermo-

electric cooling), in vacuum or in air 

— Integration time limited to < ~5 sec. due to 

high dark current and limitations of readout 

electronics.  (Integration time used at NIF = 

100 ms) 

• Uncoated sensor =>  Direct X-ray detection 

— X-ray sensitivity range:  1 – 15 keV 

— Phosphor coatings are available to extend X-

ray sensitivity up to ~ 100 keV.  Phosphor 

thickness can be tailored to energy range of 

interest. 
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31 mm 

23 mm 



CID4150 Imager Characteristics (continued) 

• Rad Hard — Lifetime Dosage = 300 krad(Si) at 60 - 90 keV 

— This is ~ 20x higher than typical CCD cameras [10 - 20 krad(Si),  n-channel] 

— CIDs fab’ed using high-resistivity p-channel process.  Other CID cameras 

available with lifetime dosage  >  3 Mrad(Si)  (60Co source) 

— Analog video output,  1.0 Vpp,  using discrete analog components (more rad 

hard than high-density digital circuitry) 

• Readout is progressive @ 500 kHz  =>  ~ 1 sec to read out 800 x 600 image 

— Nondestructive readout capability of CIDs not implemented for this camera 

• Analog output transmitted via coax. cable to 16-bit digitizer 

• Dynamic Range (estimated by vendor)  >  1000:1 

• Limiting Resolution:  10 LP/mm 
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CCXI Assembly for Fielding on DIM*-based Diagnostics at NIF 

• 2 CID camera modules 

• 3 mm thick tungsten frame shields edges of 

sensors, protects on-chip logic 

• 25 µm Kapton® film, protective cover over 

face of sensor 

• Small interface circuit board:  DC power 

filters (EMI protection) and differential line 

receivers for CLOCK and TRIG signals 
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• Video signal (image) output via micro coax. 

• All other signals via Tefzel-jacketed hook-up 

wire. 

• All materials meet stringent NIF requirements 

for cleanliness and low outgassing 

 

 

CCXI = CID Camera X-ray Imager 

* DIM = Diagnostic Instrument Manipulator 



CCXI Mounted on DIM-based Diagnostic  

Depending on the snout configuration, the 

CID cameras sit ~ 125 cm from the target, 

where neutron fluence can exceed 109 n/cm2 
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Framing 

Camera 

Detector 

Area 

Framing 

Camera 

Detector 

Area 

Image Plate Data 

for Comparison 

(Drawing excerpt from AAA10-106125-AA, GXD DLP Assy., 4x Mag.) 

Airbox Front Flange 

w/ CID Cameras 

Filter Pack w/ 

Image Plate 

DIM Cart Particle 

Detectors 

Snout 

Tube 

Pinholes 

Filters 



Electrical Design – CCXI System Schematic 

• Limited number of cables in existing DIM and infrastructure => 

only 1 coax. available per CID, used for Video Out. 

• Had to drive 1 MHz CLOCK and slow TRIG signals over long 

twisted-pair cables with differential line driver/receiver combo. 

• This works, but worsens CLOCK noise bleed-over into readout 

amplifiers.  Future improvement:  Upgrade cable plant; use 

coax. for CLOCK and TRIG. 

• Grounding, EMI shielding, & EMI filters are critical to minimize 

EMI/EMP noise pickup on analog signal over long cables. 
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Data Acquisition 

DC Power 

Triggers 

45 – 85 m 

long 



CID Camera Calibration – Responsivity 

• Responsivity measured at NSTec using Manson (3 - 7.7 keV) and HEX (8 - 14 keV) X-ray sources.* 

• Model 1 uses initial estimates — 1um dead layer,  7um active layer,  κ = 56 e-/hole pairs per count. 

• Model 2 adjusted for better fit to data — 2.2um dead layer,  6.7um active.  0.75 scale factor accounts for 

errors in initial estimates of gain, pixel active area, and charge collection efficiency. 

• 25 µm Kapton® cover further reduces low energy response. 
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CID Camera Responsivity Significant challenges to calibrate these 

CID cameras.  Short exposure + limited 

X-ray flux from cal. sources + low 

responsivity of CIDs  =>  

• Photon statistics in individual images 

overwhelmed by other sources of 

noise (readout and pattern noise) 

• Large number of images (~50) 

required to improve signal-to-noise 

• Background images must be acquired 

within seconds of X-ray images 

 

(See paper for additional details of how 

these challenges were overcome.) 

*Haugh, M. J., et al., “Calibration of X-ray imaging devices for accurate intensity measurement,” Powder Diffr. 27(2), 79-86 (2012) 

Model for Responsivity (R): 

R = QE × η × (1/к) 

QE  dead layer trans. × active layer absorp. 

η = quantum yield = Eγ / 3.66 eV 

к = gain, e-/hole pairs per count 



CID Camera Calibration – Linearity and Resolution 

• Visible light used instead of X-rays to produce enough counts 

to span full linear range. 

• Discovered nonphysical saturation behavior 

— For flat-field illumination:  Output linear up to ~ 16,000 

counts/pixel (~ 1 V), then output starts to “oscillate”, every 

other row high then low, producing bands (image below). 

— For small bright spot:  Output linear up to ~ 20,000 

counts/pixel (~ 1.2 V) if illumination confined to small 

region on sensor (such as pinhole image of ICF target). 

• This appears to be a limitation of the integrated readout 

electronics (rated 1.0 Vpp), not the CID chip itself. 
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Resolution 

• Illumination from Manson source, Ti anode, no filter 

(~ 4.6 keV X-rays) 

• Average of 50 images, 1 sec. exposures, 

background-subtracted 

• Dark outer edges are shadow of tungsten frame 

 

Linearity 

CCXI image showing onset of saturation oscillation with 

alternating rows of high and low counts 
* MTF = Modulation Transfer Function 

Limiting Resolution: 

MTF* = 50% at  ≈ 10 LP/mm 

 



CCXI Images from Shots on NIF – Noise and Dynamic Range 

• For these preliminary tests, no imaging line of 

sight for CCXI, just diffuse illumination through 

snout and filters 

• Typical Noise (Std. Dev.) ≈ 200 – 400 cts (100 x 100 

pixel center region of preshot background image) 

• Saturation limit for broad illumination ≈ 16,000 cts  

=>  Dynamic range ≈ 40:1 – 80:1 
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Saturated rows (CCXI was closer to target) 

N110820 (Shock123),  822 kJ,  411 TW,  Yn = Negligible 

CCXI-2A at 71 cm, DIM 0-0, 1x Soft X-ray Snout 

N110807 (Symcap),  1.3 MJ,  417 TW,  Yn (DD) = 3.7E+11 

CCXI-2A at 125 cm, DIM 0-0, 12x Mag Snout 

Aperture of snout — 

LOS* to target through filters and 

image plate 

Hard and scattered X-rays 

through base of snout 

* LOS = Line of sight 

• Saturation limit for small bright spot ≈ 20,000 cts  

=>  Dynamic range ≈ 50:1 – 100:1 

• Noise could be reduced with cable upgrade and 

EMI shielding improvements. 

• High dark current also eats away dynamic range 

by raising bias level of noise floor.  Cooling the 

sensor would help, but would also add complexity. 

 



Vertical Line-Out 

CCXI Saturation Limits With High Neutron Fluence 

• CCXI obtained usable data (see image to the right) w/ n-fluence 

2.4E+7 n/cm2 (Yn = 4.27E+12) and 4.3E+7 n/cm2 (Yn = 8.5E+12) 

• CCXI saturated on shots with n-fluence > 8.8E+8 n/cm2 (Yn > 

1.7E+14). 

• Exact neutron saturation limit of CCXI not measured (no shots 

with Yn ~ 1013 range), but results above are consistent with 

results at OMEGA** and calculations* of CID saturation vs. 

image plate (table below). 
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* Calculations by N. Izumi, LLNL, 8/15/2011 

** Marshall, F. J., DeHaas, T., and Glebov, V. Y., Rev. Sci. Instrum. 81, 10E503 (2010) 

CCXI-2B Image from Shot N110804 (THD) 

14 MeV n-Fluence = 2.4E+7 n/cm2 

Hard X-rays and n-induced gammas 

Speckle of neutron “stars.”  Dark rows 

and columns due to neutron upsets. 

Aperture of snout 

Detector: BAS-SR Image Plate CID4150 for CCXI

Pixel size 25um 38.5um

Material BaFBr(Eu) Si

Protection layer PET ~7um SiO2 ~1um

Sensitive layer 39 mg/cm2 1.63 mg/cm2

Energy absorption @ 10keV 97.5% 5.2%

Saturation limit 1.265E+5 PSL/mm2 1E+6 electron/pix

Signal saturation (absorbed) 63 erg/cm2 0.40 erg/cm2

14 MeV Neutron sensitivity ~1.3 keV/inc. n 130 eV/ inc. n

n-fluence equiv. to saturation 3E+10 n/cm2 1.9E+9 n/cm2

Practical n-fluence limit 3E+9 n/cm2 3E+8 n/cm2**

Practical Yn limit at 125 cm 5.9E+14 5.9E+13

Estimated Saturation Limits* for CIDs vs. Image Plate  



Shot ID DT n Yield, 

14 MeV 

DT Neutron Fluence* 

at CCXI  (n/cm2) 

N110608 1.93 × 1014 9.8 × 108 

N110826 1.72 × 1014 8.8 × 108 

N110904 4.50 × 1014 2.3 × 109 

CCXI Survives High Fluence of X-rays and Neutrons with Minimal Damage 

• After multiple low-neutron-yield shots at NIF, CCXI-2 had some X-ray 

burn-in damage as shown to the left.  X-ray burn-in can be minimized 

with appropriate filtering. 

• Series of high-neutron-yield shots (see table) with CCXI-1 at 125 cm 

from target (cumulative 14 MeV neutron fluence ~ 4.2 × 109 n/cm2) — 

Images were highly saturated and cameras experienced upsets, but 

subsequent dry run images showed no measurable damage due to 

neutrons. 
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CCXI-2B Dark Image, 

Pristine New Camera 

CCXI-2B dark image w/ burn-in 

after multiple low-n-yield shots on 

NIF (burn-in from X-rays only) 

Std.Dev. = 73 counts 

(100 x 100 pixel central ROI) 

• Std.Dev. = 124 counts (1.7x increase) 

• Mean increased by 558 counts due to 

higher dark current 

CCXI- 1B dark image after 4.2E+9 n/cm2 

cumulative neutron fluence from high 

yield shots on NIF.  

X-ray burn-in is evident, 

but no measurable 

damage due to neutrons! 

* Includes primary DT 

neutron fluence only.  

Total fluence including 

scattered neutrons was 

higher than this. 



Conclusions and Future Work 

• CID camera X-ray Imager has been successfully designed, built, calibrated, and 

fielded at NIF on DIM-based diagnostics (GXD and hGXI) in DIM 0-0 and in DIM 90-78. 

— CCXI was not commissioned in DIM 90-315 due to shorts in infrastructure cable. 

• CCXI calibration — Responsivity measured for X-rays from 3 – 14 keV.  Linearity and 

Resolution also characterized.  CIDs are suitable for various imaging applications at 

NIF. 

• CCXI performance and radiation hardness have been evaluated at NIF in a harsh 

neutron environment. 

— CCXI can acquire usable images up to ~ 108 n/cm2 (shot yield of ~ 5 × 1013 with CID at 125 cm 

from target). 

— CCXI images saturate at higher fluence, but CIDs survive with no measurable damage due to 

neutrons.  (Tested up to 4.2 × 109 n/cm2 cumulative DT neutron fluence.) 

• Future Improvements and Applications: 

— Upgrade cable plant to transmit CLOCK and TRIG signals via coax. instead of differential 

line pair, thereby reducing noise coupling into readout.  Improve EMI shielding. 

— Fine-tune delay of CLOCK signal to get optimal analog-to-digital samples where noise in 

readout signal is lowest. 

— Adapt CID cameras for other imaging applications at NIF such as EHXI (Equatorial Hard X-

ray Imager). 
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